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Schmitt trigger: A solvable model of stochastic resonance
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An ideal Schmitt trigger (ST) is the simplest two-state system available for realization of stochastic
resonance (SR). An exact solution is found for the ST driven by exponentially correlated Gaussian noise
plus a weak periodic signal. The signal-to-noise ratio is shown to pass through a maximum at a specific
value of the noise intensity. A qualitative classification is given for a class of noise models which either

exhibit SR or do not.

PACS number(s): 05.40.+j, 85.30.De

I. INTRODUCTION

Many physical phenomena can be interpreted in terms
of transitions of a system between two or more metasta-
ble states under the effect of random noise. Benzi and
co-workers [1] and Nicolis [2] used this concept to ex-
plain the onset of the Earth’s ice ages and the intervening
periods of relative warmth as a cooperative effect between
the weak, periodic variations of the eccentricity of the
Earth’s orbit and random fluctuations in the solar insola-
tion. They discovered that a weak periodic signal can be
dramatically increased in strength relative to the noise
background when the noise intensity is “tuned” to a par-
ticular value.

The effect was first demonstrated in a laboratory exper-
iment with an electronic device—a Schmitt trigger (ST)
by Fauve and Heslot [3]—and, more recently, with a
bistable ring laser [4]. These experiments stimulated a
great deal of theoretical activity [S—12], a further experi-
ment [13], and analog simulations [8,9,12,14,15]. Further
information can be found in some recent workshop
proceedings [16,17] and a review [18]. The common
feature of all these systems, theoretical models, as well as
experimental realizations, is their strong nonlinearity,
which renders them solvable only by various approximate
procedures supported by numerical simulations. We
point out that the ideal ST is different from many other
experimental realizations. First, it is an ideal two-state
device: its output can be either of only two values.
Second, assuming that the switching time is fast enough
that it can be neglected compared to all other time scales,
which is often the case in practical applications, the ST is
not a dynamical system; rather it is simply a bistable
threshold device.

The purpose of this paper is to give an analytical solu-
tion for the Schmitt trigger pumped by a weak signal and
a colored noise of arbitrary intensity. The results of this
calculation provide us with analytical expressions for the
statistical characteristics of the ST and for the weak-
signal amplification coefficient. We hope that the
rigorous solution of this simple system will be instructive
for the investigation of more realistic systems.
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II. GENERAL EQUATIONS

The ST is an electronic circuit with the output fixed to
one of two voltages and a hysteresis—there is a range of
the input for which the circuit is bistable. A circuit dia-
gram of the Schmitt trigger is presented in Fig. 1(a), its
input-output characteristic is shown in Fig. 1(b). The
trigger resides in state 1 as long as the input voltage V is
less than V,,. At V=V, the trigger switches instantane-
ously into state 2 and resides in it as long as V> —V,,.
The input voltage can be divided into a signal and noise
components. For our purposes it is sufficient to consider
a weak sinusoidal signal and a Gaussian noise,

V(t)=v(t)+ eV, cost . (1)

In order to restrict variations of v (¢) in a given interval of
time At, we assume v (¢) is a colored noise with a correla-
tor

_e=r
TC

2
(v(t(t')y=-"—exp

27, ’ @

where o gives the integral dispersion of the noise, 7, is
the correlation time. The random function v (z) obeys the
equation

dv v o
—=——+4—&(), 3
ar T &(1) (3)
€ coswgt 3 1
J J
z(t) . _vz 'V1 2(t)
' ji
L R, R, 2

FIG. 1. (a) A circuit diagram of the Schmitt trigger. The
threshold ¥V, is determined by the ratio of the resistances
R,/R,. (b) The input-output characteristic of the trigger. The
noise coordinate is the x axis, and J, , are the probability fluxes.
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where £(¢) is a §-correlated Gaussian noise,
(E()E(L"))=8(t—1") . @)

To simplify calculations, we rescale v by V),

x=v/V,y, (5)
and substitute

t—t/7, . (6)
Then the input of the trigger becomes

X (t)=x(t)+ecoswt , (7

where 0, =Q, 7.,

ax _
dt

g

—x+
Vort/?

&(t) . (8)

The trigger switches instantaneously from the state 1 into
the state 2 as soon as X (z) reaches the value X=1 and
backwards at X (¢#)=—1. The Langevin equation (8) can
be substituted by an equivalent Fokker-Planck equation,

P _ 3 (0P
3% Bx D Fw +xP |, 9)
where the effective diffusion coefficient is introduced,
2
D=—— . (10)
2VOTC

For distribution functions P, ,(¢,x), which completely
specify the state of an ensemble of the triggers, one can
write the system

O _ 8 1% b | 4D8(x +ecoso, i+ 1)L |
at dx ox : ax
(1)
8P2:_3_ D—E—)ﬁ+xP2 —D8(x +€cosw t—l)aP1 ,
ot x| ox : ox
(12)

where the last terms describe the switching events be-
tween the two states. This system must be solved with

the boundary conditions
P,(t,1—€ecosw t)=P,(t, —1—€ecosw 1)=0 . (13)

Equations (11) and (12) can be written as two decou-
pled uniform differential equations,

P2 _ 3
at ax

P,
dx

+xP,, |=0. (14)

At the points of switching between the states 1 and 2
solutions of these equations obey the boundary conditions

OP1z =_+a 2L atx=F1— (15)
t
O o Atx ecosw,t ,

where the square brackets denote the jump of a function,

[f(X)]=f(x+0)—f(x—0). (16)
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The populations p,(z) and p,(z) of the two states of the
trigger are given (in the absence of a signal, €é=0) by the
integrals

1

p()=[ P(xndx, 17

pz(t)=f_1P2(x,t)dx . (18)
The normalization condition looks like

pi(t)+p,(6)=1. (19)

In the next section a steady-state solution of Egs. (11) and
(12) will be found. As a simplest time-dependent problem
we consider then the process of relaxation of the popula-
tions p,(z) and p,(¢) when at ¢t =0 the trigger is switched
into the state 1. In this way a fundamental quantity w ()
is introduced which describes the distribution of the life-
time of the trigger states. In terms of the Fourier trans-
form of w (¢) one can express the noise spectrum

N(@)= [{p,()—p,(2),p;(t')—p,(z"))
X expliw(t—1t')]dt . (20)

In a similar manner, the small-signal application
coefficient 4 (w,) will be calculated.

III. STEADY-STATE SOLUTION

To begin with, consider the trigger under effect of noise
in the absence of a signal, e=0. In the steady state Eqgs.
(11) and (12) become ordinary differential equations,

d_ |pPa +xP,, |=—1J, 8(x+1), 21)
dx dx ’ ’
where
le=¢1)& (22)
’ dx x==1

are (positive) fluxes of probabilities. Because of the sym-
metry of the problem, in the steady state

J,=J,=Jo(D), 23)

and one needs only to solve one of the equations, which
can be written as

D——~+xP,=—J0(1—x]), (24)

where O(z) is the Heavyside function. Its solution is

(Jo/D)e 720 [1e3?20gy | —1<x <1 (25)
P (x)= 2 ST
(Jo/D)e >0 [ &Py | x<—1. (26)

The flux J;, is determined by the normalization condition,

[! Pixiax=1/2, @7

which gives
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172
Jo(D)= ‘gD;] /[ JlerPay . 28)
In the limiting cases,
Jo=~(87D) 2exp(—1/2D), D <<1, (29)
and
Jo=(D/8m)'/?, D>>1. (30)

The solution derived in this section will serve below as
a zero-order approximation for considering more compli-
cated problems. In order to render the presentation more
transparent, it is useful to introduce some new concepts
and notations. The points x =1 (for state 1) and x = —1
(for state 2) will be referred to as the sink points, whereas
the points x =—1 (for state 1) and x =1 (for state 2) will
be called the source points. The values of a function f (x)
at these points are denoted by subscripts

fe=f(£1), (31)

whereas the jumps of a function will be denoted similarly
to Eq. (16),

[fle=f(£14+0)—f(£1-0). (32)
The solutions derived above will be denoted by P(l?%(x).
To calculate perturbatively the small-signal amplification
coefficient, we need the derivatives of P{°)(x) at the sink
points,

ar(}

dx

_¢J (33)
+ D’

and the jumps of their derivatives at the source points,

(0)

dPy),
dx

Jo
LoD (34)

IV. RELAXATION OF POPULATION

Immediately after a switching of the trigger, the proba-
bility distribution P,(¢,x) [or P,(t,x)] is concentrated
around x =—1 (or x=1),

P (0,x)=06(x+1), (35)

where the instant of the switching is taken as a reference
point. For ¢ >0, the distribution P,(¢,x) spreads out and
with increasing ¢ approaches the equilibrium distribution
[see Egs. (25) and (26)]. In order to solve this time-
dependent problem it is convenient to use the Laplace
transformation

fowe““Pl’z(t,x)dtEexp[(l—xz)/4D]7’1’2(K,x). (36)

The exponential factors cancel out in all the final expres-
sions of this section. Therefore, they will be omitted in
all the intermediate calculations. Introducing the fluxes,

dP,,(A,x)
D 1,2 A X

A=7F

, (37)

the system (11) and (12) becomes
DPY—(x*/4D +A—1)P;=—[1+J,(M)]8(x +1), (38)
DPY —(x*/4D +A—1)P,=J (M)8(x —1) . (39)

The uniform equations for ?;, have two linearly in-
dependent solutions, the parabolic cylinder functions,
U(A—L,x/D'?) and V(A—1L,x/D'/?) [19]. In the final
results the function V(A—1,z) only enter through the
Wronskian, so it is convenient to fix its amplitude by the
condition
dUu dv 172
yal _ydV _pin 40
dz dz (40)
For the sake of brevity, the following notations are intro-
duced:

Y(x)=UA—L,x/DV)V_—V(A—1 ,x/DVHU_ ,

(41)

Y(x)=UM—1,x/D'?) . (42)
In the sequel, we make use of the relations

Y_=o0, (43)

Y. =1, (44)

YY' —Yy'=y_ . 45)

In these notations the solution of Egs. (38) and (39) con-
tinuous at the source points, x =*1, is given by

Py px)= K Y 0(Fx), |x|>1. @7)

Calculating derivatives at the sink points, one obtains

d?l’z
dx

+= $K1,2¢+ ’ (48)

whereas for the jumps of the derivatives at the source
points holds

d?]’z

. =—K ¥ . (49)

F

Substitution of these results into Egs. (15) yields two
equations for K| ,,

K, —K,,=1/D , ’ (50)
K\, —K,p_=0. (51)

Solving this system and substituting the result into equa-
tion

J12=DK ¥, , (52)
yields the expressions for the fluxes,
Ji= % , (53)
Y=Y
2
n=— (54)

T
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In the limit A—O, the fluxes J,, approach the same
value,

Jia=do/A, AK1, (55)

which gives the expression for J, in terms of the func-
tions ¢4,

d ¥-(
dr P (M) |o

The ratio ¢¥_ /¢, is the most fundamental quantity in
our theory. To demonstrate this statement, consider the
decay of state 1 under condition that the flux J,=0. As-
suming K, =0 in the system (50) and (51) gives the result

Jyl=2-—"

(56)

JI(K)=W . (57)

The decay or the population p,(¢) with time is described
by the equation

dp 1 (1)
= —w(), 58
a w(t) (58)
and w(¢)=J,(¢) can be interpreted as the distribution of

the lifetime of the trigger states: when sampling an en-
semble of the triggers one finds that a trigger survives in a
given state a time between ¢ and ¢ +dt with the probabili-
ty w(#)dt. The inverse Laplace transformation gives

U(—io—1,D717?)

U(—io—4,—D71?)

, t>0, (59)

w(n= [ 22 ier

where U(a,z) is the parabolic cylinder function. In what
follows, the notation that will be used is

)

+ 3 (-1

m>n

N(co)=i2 S <w

[0 -

n
t— 3
1=2

m
—lw 2 tl

exp
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_ o —¢+ _ U(K—%,D_l/z)
w(x):fo e Mw(t)dt—ij—— UO—1._p-17%)
2

(60)
V. SPECTRUM OF THE OUTPUT NOISE

The results obtained above enable one to calculate the
spectrum of the noise (20). In order to achieve this goal,
we resort to Eq. (58). Physically, this equation describes
the stochastic behavior of the ST as a series of switching
events between states 1 and 2 with the time ¢ between the
switches distributed with the probability density w(z).
Equation (20) is equivalent to the relation

N@)=-L [ Gojeexpliott—t)1dt, (6D
[
where

At a switching event the value of p(¢#)—p,(?) changes by
+2, so that j(z) is a sum of 8-like pulses with the ampli-
tudes 12,

Jj()=2 2

n=1

(—1)"8 ‘t—z Y (63)

=1

The Ith switching event occurs in the interval of time
(¢;,t;+dt;) after the (/I —1)th event with the probability
w(t;)dt;. The intervals ¢; (I=1,..., ) are completely
uncorrelated between each other, since the trigger com-
pletely forgets its history after each switching event.
Therefore, to average a function of j(¢), one needs to in-
tegrate it over all the #;’s with the weights w (¢;). Substi-
tution of Eq. (63) into Eq. (61) and integration over ¢,
with the weight w (¢,) yields

]) : (64)

+c.c.
I=n+1

where c.c. denote the complex conjugation. To get rid of transient effects, one should assume that t — «, whereas  is
finite. In this case to the sum (64) contribute finite values of m —n, whereas the sum over n becomes singular when
t— . Hence, the two factors in the angular brackets in Eq. (64) can be averaged independently. Averaging of the ex-
ponent gives

n+k © . k
Wk(w)=<exp —io 3> >= [fo e Oy (dt | =wH—iw), (65)
Il=n+1
W_,=wklio) . (66)
Summation over k then yields
S (1) 1t S (= D¥wk K —ip)]=Rel-WU@)
kzw( DWW (o) 1+k§1( DYw*io)tw*(—iw)]=Re Fwlio) (67)

The sum over n after averaging of the first factor in Eq. (64) looks like

=3 _ s — [499Q i o [ 4Q expiQNw(iQ)
¢ n§2<wt ,§2t1> f 2 Ew(lﬂ) f21'r 1—w(iQ) ’ (68)

For t — oo, the main contribution into the integral comes from |Q| << 1, so that one can use the expansions
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w(iQ)=1 (69)
and
1—w(iQ)=iQ/2J, , (70)
as it follows from Egs. (56) and (60). The final result for C is
. dQ exp(iQt)
= 1 == = .
C=2J, lim J 2r i0+0 20 7D
Now, the expression for the noise spectrum takes on a very simple form,
8J, = 8J, Ulio—1,—D 7))~ Ulin—1,D71?)
Nlw)= oRelﬁ—_lbiz—zoRe 3 ~12 : Z1/2y ° (72)
vty e Ulio—L,—D 7 ')+ Ulio—L1,D7'7?)

mZ

where J is given by Eq. (28) and U(a,z) is the parabolic
cylinder function. With the use of asymptotic functions

Ul—io—1,z)~exp(—z%/4), z>>1, (73)
and

Ul—io—1,z)~exp(—z%/4)—iw(2m)?z " lexp(z?/4) ,

—z>1, (74)

which are valid for || << 1, one obtains
N(w)=~ , D<1, (75)

w2+7/2
where
5 172

~ ~ |— _— 76
y=~4J, [ _— exp D (76)

In the opposite limit of a strong noise,

2 3 ReiwB (1
)

N(w)=

t+tin/2),

2’2

D>>1, (77)

where B (x,y) is the Euler beta function. Asymptotically,

2In2 , w<<1, D>>1 (78)

N(w)= 2 1
WE“S’/—Z R D>>|a)|>>1 . (79)

With the use of the inverse Fourier transformation Eq.
(77) yields

N(t)Z% arcsin[exp(—|t])], D>>1. (80)

Note that N(¢#) is expandable in a sum of
exp[ —(2n +1)|¢|] with integer n’s, in accord with the
fact that the eigenvalues A of the Schrodinger equation
with parabolic potential are integers.

VI. SMALL-SIGNAL AMPLIFICATION COEFFICIENT
Under the effect of a sinusoidal input, the output of the

ST changes in two ways. On the one hand, it acquires a
sinusoidal component with the input frequency, which is

f

called the signal. On the other hand, the broad output
spectrum is also changed. We will be interested in calcu-
lation of a small-signal amplification coefficient. A &-like
contribution to the output spectrum has its origin in
coherency of the state populations p,(t)—p,(¢) and
pi(t")—p,(t') at |t —t'| — . In this limit, the averaging
of the two factors in Eq. (16) can be performed indepen-
dently with the result

S(@)= [ {py()—py (1)) {p, (') —p,(t")

Xexplio(t —1t')]dt
2w
)

lj(w,)]?8(0—w,) , (81)

where j(w,) is the amplitude of the flux induced in the
trigger by a small signal € cosw, ¢,

ijlw)
20

(p()—py(1))= exp(—io,t)+c.c. (82)

s

Hence, to calculate the amplification coefficient it is
sufficient to find the relation between the output j(w;)
and the amplitude € of a small signal € exp( —iw,t).

To begin with, this problem is considered in a phenom-
enological approach, which is justified in the limit of a
weak noise, D <<1. In this case transitions between
states 1 and 2 are exponentially rare, 7o<exp[1/(2D)]
>>1 (7, is the lifetime of a Brownian particle in a para-
bolic potential well with the barrier height 1 and the
noise intensity D <<1). If the signal frequency is small
compared to the friction coefficient, w, << 1, the switch-
ing of the Schmitt trigger can be described in an adiabatic
approximation. This approach implicates that the life-
times of the two states of the trigger, 7,(¢#) and 7,(¢), are
calculated for the barrier heights frozen at the moment ¢,
and then they are used as the rate coefficients in equa-
tions for populations p;(¢) and p,(z). A small signal
eexp(—iw,t), €<<1, changes the barrier heights only
slightly,

1 1
exp

[1Feexp(—in t)]*—1
TI,Z(I) 27'0

2D

+ —iw,t)/D
- exp[eexp(—iw ] ’ (83)
27'0
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where the coefficient } takes into account that, in the
case of the Schmitt trlgger, the Brownian particle escapes
only across one barrier. The equation for the state popu-
lations, p,(¢) and p,(?),

dP1,2=_ Pi,2 T D21

84
dt TI,Z(t) TZ,I(I) ’ (84)

can be simplified, if the signal is considered in a linear ap-
proximation, which is justified for

e<<D . (85)

This inequality yields the criterion of a small-signal mag-
nitude in the limit of a weak noise. Expanding 7 ,(¢)
linearly in € and substituting

P12=3tp, (86)

one obtains the equation
dp _ _p eexp(—iawgt) 87)
dt To 2D To ’

The solution of this equation is straightforward, and the
result for j(w,) looks like
TP E— (88)
J19s ——D(l—iwsq'o) ’

since dp,/dt—dp,/dt=2dp/dt. Introducing the
amplification coefficient, 4 (w,), by the relation

S(w)=€e*A(0,)80—w,) , (89)

one obtains the following expression:

T 1
2D% 1+l

Alw,)= (90)

In order to investigate the general case, D ~ 1, one has
to solve the system of two diffusion equations. As before,
a linear response to a small signal, e(z)=eexp( —iw,?), is
considered. The result for the cosine signal is then ob-
tained by restoring simple numeric factors. Expanding
P, ,(t,x) in &(2),

P ,(t,x)=P$,(x)+e(t)exp[(1—x2)/4D]r  5(x),  (91)
]
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one obtains for the functions r, , the solution very similar
to Egs. (46) and (47) up to the substitution of A by —iw;.
In contrast to Sec. IV, one has to change the boundary
conditions for this solution. Since P(l?%( +1)=0, from Eq.
(13) it follows that

(0)
P

P, x1—e(t)]~ —elt) +e(t)r ,l =0, (92)
+

which is equivalent to the condition [see Eq. (33)]

r12!+ +J0/D (93)

With an account of this condition we write down
Jo Y(F
P2 =k, Y(Fx)p, T FO%L) , Ixl<1. (94

To write down r ,(x) for |x|> 1, one has to use the con-
ditions of continuity of P; 2(1 x) at the source points,
x=F1—€(z). Expanding Pl )(x) linearly near these
points, one obtains

dx

=7 (95)
+ D~

["12]

This condition is sufficient to construct the expression

Jo ¥y~

D v.v. P(Fx),

rl’z( x)= k12Y++ |x{>1.

(96)

Below, the derivatives of 7y z(x) at the sink points,

=Tk —_— 97
. 2%+ gy v o7

and the jumps of these derivatives at the source points,

dr Jo ¥

— ) =gy I (98)
dx |+ Dy’

will be used to calculate the coefficients k, ,. To this end,

one needs to derive expressions for the quantities entering

Egs. (15). In an approximation linear in €,

dry,
dx

dP,, d 1—x?
ML ~— |P{%(x)+e(t)exp Fio(x)

dx |41—qn dx |12 4D b2 +1—elr)

dP(10% d2P12 (1) dry,
~ . —e(t + : .
dx . e(t) dx2 2D 7'12I+ e(t) dx N (99)
With the use of the relation

d’P | _ 1 dPO o (100)

dx? |+ D dx |+ D%’

which follows from the static diffusion equation for the points of vanishing P, ,(x), and Egs. (93) and (97), one obtains a

simple expression,

dP, ,
dx

<

_._0
~F

=+ — +e(t)
T1—elr) b

Tk, +

Jo [ a
W

] . (101)
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The jumps of the derivatives are calculated in the same
way. Similarly to the second line of Eq. (99), one arrives
at the expression

dpP, , _ dP(]% —e(r) 2 1,2
dx | Fi1-«0 dx |+ dx* |3
e(t) dry,
i‘z_D‘["l,zh +elr) dx |+
(102)
Making use of the relation
d’Py) _Jo
P . = —D—2 s (103)

which is obtained analogously to Eq. (100), and substitut-
ing Egs. (95) and (98), yields the result

P> Yo ey |~k

—== ~——+elt) | — _

dx | F1-ex D¢ v2¥
J ’
JJo ¥ 1]
D |y, 2D

(104)

Substituting these expressions into Egs. (15) and separat-
ing the terms linear in €, one derives the system of equa-
tions

Jo (v a
k1¢;—k2¢+=—D(l %eri—_l (105)

Jo (v a
k1¢+—k2¢_=3° li-i—+%-} (106)

with the solutions
Jo 1 Yy Yl
kj=—k,=——— | 2422 |, (107)
' 2D Yty |y, lﬁ—]

The contributions to dp,/dt linear in € come in from
both the sink point and the source point and are equal in
the magnitude and sign. On the other hand, their sum is
equal to —dp,/dt. Hence, in order to find j(w,), one
only needs to substitute k£, into Eq. (101) and then multi-
ply it by 4D,

Yl 1

j =4eJy | ———— == | .

jlog)=4el, vt 2D (108)
The small-signal amplification coefficient is then given by

8nsy [~y 1 [
Alog)=—— |——————— — —— (109)
70 |Y_+vy 2D

In the limit D << 1, one has the asymptotics

Y, =~exp(—1/4D) , (110)

Y ~(1=2iw, 7)Y, (111)
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FIG. 2. The signal-to-noise ratio R (®,D) plotted against the
noise intensity D for several different signal frequencies w.

Y. =~—¢,./2D , (112)
Vv _~(1+2iw, 7)Y, /2D , (113)
where
) D 172
s
T~ v ~ 7 exp aD |- (114)

Substitution of this expressions into Eq. (108) reproduces
the result (88) of the phenomenological approach. In the
opposite limit of a strong noise the amplification
coefficient is independent of the frequency,

Alw,)~1/D , D>>1. (115)

The signal-to-noise ratio,

R(w,D)= A(w)/N(w) , (116)

is plotted in Fig. 2 as a function of D for several values of
®. One sees that a pronounced maximum occurs at
D ~0.2—0.3, which is a clear manifestation of SR.

VII. QUALITATIVE CLASSIFICATION
OF THE NOISE MODELS

In the previous sections, we have considered in detail a
particular model of SR, when a Schmitt trigger is
pumped by a colored Gaussian noise, governed by Eq. (8).
This equation describes motion of an overdamped
Brownian particle in a parabolic potential. The presented
approach can easily be extended to investigation of a
whole class of stochastic resonance models, if one as-
sumes that the noise fed into the Schmitt trigger is simu-
lated by the Brownian motion in a potential V(x),

_di - _ d V(x) 1/2

i T +(2D) 7“&(¢) .
For the sake of simplicity, the potential is assumed to be
symmetric, V(x)=V(—x). The diffusion equation in this
case looks like

P _ 3
ot Ox

(117)

p P dV(x)

ox dx P

(118)

Without loss of generality, one assumes that the switch-
ing event occurs immediately as soon as the Brownian
particle reaches the point x =1 (for state 1) or the point
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x=—1 (for state 2).
Schrédinger equation,

Introducing the solution of the

d | 1 |av|_14¥ | _.
Ddx2 4D | dx 2 dn? v=ioy, (119)
with the boundary condition
Ww,x)—>0, x—>o, (120)

the results of the previous sections may be rewritten in
the form

N(w)Z%Re% (121)
and
P ol (122)
P F T N

where J,=J,(D) is the steady-state flux of probability,

_D ®  —V(x)/D Uvipg |71
Jo(Dy=T| [7e ™V Pax [l Pay |, 129
and our standard notations are used,
Y. =yYlo,x1), (124)
, _ dylw,x)
= 125
Yy dx . (125)

In the limit of a weak noise, D << 1, all the models of
noise give the identical results for N(w) and A(w) [see
Egs. (72) and (90)], if the decay rate is determined by the
relation
172
2V

7D

(126)

These results show that, for small D, the signal-to-noise
ratio grows exponentially with D. This behavior is
universal, since it does not depend on the particular
shape of the potential as long as V', >>D.

The range of intermediate D, when V', ~D, can only
be solved numerically. Simplification of calculations is
again possible in the case of a strong noise, when scaling
arguments can be successfully used for a very important
class of the potentials V(x) with powerlike asymptotics,

V(X)=Vipx®, x—w . (127)

Then, in a limit of strong noise from Eq. (123) follows
JoxD!7Ve D>t (128)
Solution of Eq. (119) for x >>1 can be written in the form
W@, x)=%(w/D' "% x /D), (129)

where the function 9 obeys an equation which does not
contain D. For a =2, solutions of this equation can be
continued down to the points of switching, since in the
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region |V(x)| < D the potential can be neglected, so that
its particular shape in this region becomes irrelevant.
The switching points, x ==1, are placed very closely on
the scale of x ~D1/®>>1. Therefore, in Eq. (122) one has

Y_—Y, <D 2%, >4, /D . (130)
With an account of these dependences, for the noise and

signal spectra one obtains

N(w)=D?%**"1y (131)

a

_ 0
Dl—z/a 4

[2]

——2/
A(w)=D “"“a pi-/a

) (132)

a

where n,(z) and a,(z) are functions, dependent on « as a
parameter. The signal-to-noise ratio is then given by

A(w) —p'~af

N(w)

2]

5,—:2/—(1 , (133)

where the function f,(z) is determined by the parameter
a. The last equation shows that a=4 is a separating
point in the sense that for a >4 the signal-to-noise ratio
increases with D both for small and large values of D, and
there are no grounds to expect a maximum at a D ~ 1.
On the contrary, for a <4 the signal-to-noise ratio rises
exponentially with D for D <<1 and fall down with D for
D >>1. Therefore, the signal-to-noise ratio must have a
maximum at a D~1. The power a=4 may be con-
sidered as a rather large, so that the phenomenon of SR is
observable for a wide class of the noise models. Qualita-
tively, for flat potentials (small a) with increasing D the
distribution of particles around the switching points be-
comes depleted which tends to suppress the switchings.
Steeper potentials (large a) confine particles to a narrow
region near x ~ 1 enhancing amplification of the signal.
In conclusion, two different approaches were used
above to investigate SR in the Schmitt trigger. The ma-
jor part of this article considers the "case" when the
Schmitt trigger is fed by a noise represented by the
Ornstein-Uhlenbeck process. Our exact analytical solu-
tion is tightly restricted to this assumption. The main re-
sult here is that the Schmitt trigger, indeed, exhibit SR
for this type of noise. In the rest of the paper, a qualita-
tive consideration is given for a class of more general
models of noise. It is shown that the signal-to-noise ratio
increases monotonically with the noise strength if the
noise amplitude distribution remains sufficiently narrow.

ACKNOWLEDGMENTS

I am grateful to A. Nikonyuk for carefully reading this
manuscript and for a number of useful comments, to
Peter Jung for a valuable discussion, and to Frank Moss
for his kind hospitality at the University of Missouri at
St. Louis, where this work was partially done, and for
permission to use Fig. 1.




48 SCHMITT TRIGGER: A SOLVABLE MODEL OF STOCHASTIC. .. 2489

*Permanent address: L. D. Landau Institute of Theoretical
Physics, Moscow, Russia.

[1] (a) R. Benzi, A. Sutera, and A. Vulpiani, J. Phys. A 14,
L453 (1981); (b) R. Benzi, G. Parisi, A. Sutera, and A. Vul-
piani, Tellus 34, 10 (1982); (c) SIAM J. Appl. Math. 43,
565 (1983).

[2] (a) C. Nicolis, Tellus 34, 1 (1982); (b) in Proceedings of the
NATO ARW on Stochastic Resonance in Physics and Biolo-
gy, edited by F. Moss, A. Bulsara, and M. F. Shlesinger [J.
Stat. Phys. 70, 1 (1993)].

[3] S. Fauve and F. Heslot, Phys. Lett. 97A, 5 (1983).

[4] (a) B. McNamara, K. Wiesenfeld, and R. Roy, Phys. Rev.
Lett. 60, 2626 (1988); (b) G. Vermuri and R. Roy, Phys.
Rev. A 39, 4668 (1989).

[5] B. McNamara and K. Wiesenfeld, Phys. Rev. A 39, 4854
(1989).

[6] (a) P. Jung and P. Hinggi, Europhys. Lett. 8, 505 (1989);
(b) Phys. Rev. A 41, 2977 (1990); (c) 44, 8032 (1991).

[7] P. Jung, Z. Phys. B 16, 521 (1989).

[8] T. Zhou, F. Moss, and P. Jung, Phys. Rev. A 42, 3161
(1990).

[9] L. Gammaitoni, F. Marchesoni, E. Menichella-Saetta, and
S. Santucci, Phys. Rev. Lett. 62, 349 (1989).

[10] H. Gang, G. Nicolis, and C. Nicolis, Phys. Rev. A 42,
2030 (1990).

[11] I. Dayan, M. Gitterman, and G. H. Weiss, Phys. Rev. A
46, 757 (1992).

[12] M. Dykman, P. V. E. McClintock, R. Mannella, and N.
Stocks, Pis’'ma Zh. Eksp. Teor. Fiz. 52, 783 (1990) [JETP
Lett. 52, 145 (1990)].

[13] L. Gammaitoni, M. Martinelli, L. Pardi, and S. Santucci,
Phys. Rev. Lett. 67, 1799 (1991).

[14] T. Zhou and F. Moss, Phys. Rev. A 41, 4255 (1990).

[15] (a) H. Gang, G. Qing, D. Gong, and X. Weng, Phys. Rev.
A 44, 6414 (1991); (b) G. De-chun, H. Gang, W. Xiao-
dong, Y. Chun-yan, Q. Guang-rong, L. Rong, and D. Da-
fu, ibid. 46, 3243 (1992); (c) H. Gang, G. De-chun, W.
Xiao-dong, Y. Chun-yuan, Q. Guang-rong, and L. Rong,
ibid. 46, 3250 (1992).

[16] Proceedings of the NATO ARW on Stochastic Resonance in
Physics and Biology [Ref. 2(b)].

[17] Proceedings of the NATO ARW, Rate Processes in Dissipa-
tive Systems: 50 Years after Kramers, edited by P. Hanggi
and J. Troe [Ber. Bunsenges. Phys. Chem. 95, (1991)].

[18] F. Moss, in Some Problems in Statistical Physics, edited by
George Weiss, Frontiers in Applied Mathematics (SIAM,
Philadelphia, in press).

[19] Handbook of Mathematical Functions, edited by M.
Abramowitz and Irene A. Stegun (Dover, New York,
1970).



